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OF ATMOSPHERIC GUST RESPONSE PROBLEM

By A. S. Richardson, Jr.
SWMMARY

Equations of motion are derived for the dynemic response of an air-
craft to random atmospheric gust loads. These equations include the
degrees of freedom of plunging, pltching, rolling, and an arbitrary num-
ber of elastic normal modes. Solutions of these equations are expressed
in terms of a number of so-called primitive solutlions obtainable by intro-
ducing the Dirac delta function. The solutions for center-of-gravity
acceleration response and wing-root bending-moment response depend upon
certaln autocorrelations and cross correlstions which enter the anslysis.
Results for simplified cases show that unsteady serodynsmic theory is
not Important for increasingly large values of the turbulence scale com-
pared with values of the wing chord. However, the plitching degree of
freedom exhibits an importent effect as the turbulence scale incresses.
The results are also compared with the results of the ususl sharp-edged-

gust formulas.
INTRODUCTION

The subject of alrcraft gust loads has been studied by theoreticians
end experimentalists for many years. It is one of the principel consid-
erations in the design of both militery and commerclal aircraft; that is,
airworthiness requirements for all types of sircraft lnclude gust-load
criteria. These criteria in all cases are based on the sharp-edged-gust
formula developed by Rhode in 1931 (ref. 1) and in most cases teke into
account the effects of gust alleviation due to rigid-body motion.

The engineer's understanding of the gust-load problem has steadily
increased over the years through basic research investlgation and opera-
tional experience. Foremost among these investigations is the work carried
out by the National Advisory Committee for Aeronautics. A great body of
experimental data 1s now available to engineers and aircraft deslgners
through these research efforts. Important statisticel informatlon relating
to peak gust loads experienced by alrcraft of various types subject to
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atmospheric gusts in various types of atmospheric and topographical
environment has been collected by VGH recorders (ref. 2). Such informa-
tion mey be used to determine the probability density dlstribution of
peak gust loads as s function of airspeed, altitude, and several important
aircraft parameters.

More recently, important lnformation hes become available on the
gust structure in the atmosphere through the applicatlon of genersaslized
harmonic analysis (refs. 3 and 4). This type of ansalysis has been used
to predict gust loads. In additlon to these analyses, which are in the
nature of epplied research, more basic theoretical lnvestigations which
bear directly on the gust-loads problem msy be cited. For example,
recent papers by Liepmenn (refs. 5 and 6) and Fung (ref. T) are among
the importent contributions to the present state of knowledge.

A fundamental aspect of all of these investigatlons is the necesslty
for glving the gust structure a mathematical form convenient for inclusion
in a rational snalysis of gust loads. Unfortunately, this is still a weak
area whlch can be strengthened only by continued experimental and theoret-
ical investigation. Im this commection effective use of turbulence theo-
ries may prove to be very fruitful. Certainly, the problem of atmospheric
turbulence bears too close a resemblance to many of the turbulence prob-
lems in seronautics already studied to be ignored. It is well known, of
course, that many of these latter “"classical" problems are far from being
solved. Indeed, the subJect of turbulence in genersl hss stimulated some
of the keenest intellects in historicel times, yet many areas of the tur-
bulence problem remsin unconquered.

In the present report the concepts derived by Llepmann and Fung are
extended to include the complications introduced by a multi-degree-of-
freedom system, the airplane. In some respects the analysis parallels
the work of Diederich (ref. 8). Related experimental investigations are
reported in references 9 and 10.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financisel assistance of the NACA.

SYMBOLS
Ar(x,y) mode shespe of rth normal mode, positive up
b wing semispan
be wing semichord

c(k) Theodorsen function
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Cr,
Cy,(¥)
c(y)

Ee

Ei
[e]
[733]
£55(%)
he(t)
J

k
L
L(x,y,t)
)

Zl‘

My ¥ (w)

1ift coefficient

section lift-curve slope of wing at station y

chord of wing at station y

external work of gpplied forces

internal strain energy

generalized stiffness matrix

forcing-function matrix

diagonal element of [Fji]

system function

plteh radius of gyration referred to wing semlchord

reduced frequency, abe/U

integral scale of turbulence

1ift on the wing at point (x,y)

distance traveled in arbitrary time interval, Ut
tail length measured from airplane center of gravity

distance between wing midchord snd teil midchord in plene
of symmetry

total number of modes

massg of airplane

bending moment

generalized mass, k/ﬁ dm Ar(x,y)
Sl

transfer function
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mass matrix

number of generalized coordinates
veloclty potential

3% 3t

pressure

pressure difference et point (x,y), positive when it pro-
duces 1ift

generalized coordinste

dynamic pressure

ratio of horizontal tell area to wing aresa
normal modes (subscript or superscript)

total wing area

projection of airplane plan form in xy-plane
kinetic energy of airplane
time

mean forward speed of airplane

Vaz+xb+yf +Z Ar(x,y)ér

XY

r

crossilow

stochastic function with zero mean value
gust veloclty

root-mean-square intensity of turbulence

coordinate system, x positive forward, y positive along
right wing
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Xos¥

X,y

-~

X,y

Z

| owg|
2
1 1
22,

coordinates of midchord
coordingtes of three-quarter chord
coordinastes of quarter chord

vertical displacement of center of gravity of rigid air-
plane relative to averasge position, positive up

angle of attack

equivalent gust sngle of attack

aerodynamic matrices
sweep angle

unspecified matrix

unit impulse

control angle

integration variable (streamwise)

integration variable (spaenwise)

mode shape for twlsted surface which is rigid chordwise

angular displacement about center of gravity of rigid eir-
plane, positlive nose up

airplane relstive density
spanwise weighting function

bending-moment coefficients for r,s normal modes

generalized dependent wvariable
integration variable (streamwise)

displacement of r,s normal modes, positive up
air mass denslty

standard deviation
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T integration varisble (time)

¢ power spectral density

) bank angle of rigid airplane, positive right wing up

@ correlation function

X correlation interval (distance)

¥(t) Kilssner function

w angular frequency

wp natural (angulgr) frequency of rth normal mode

(),(i derivatives with respect to time

E; derivatives with respect to distance (measured along
x-axis)

O average

DERIVATION OF DYNAMICAL EQUATIONS OF MOTION

The problem of aircraft response to atmospheric turbulence (gust
response) will be considered in a rather general manner in order to bring
out some of the important features of the problem. The analysis 1ls set
up on the basis of familisr dynemical principles and is carried through
as far as possible without introducing statistical concepts. However,

8 certain point is reached in the analysis, when solutions to the equa-
tions of motion are desired, where the introduction of statistical con-
cepts becomes mendatory if the analysis is to continue. These concepts
are then brought into the analysis and the final solution is obtalned.
The snslysis ls carried out this way in order to show that a solution to
the problem depends upon the proper use of famlliar dynamical analysis
principles as well as upon statistical analytical tools.

The problem mey be formulated by requiring thet the "reeponse" of an
aircraft flying with velocity U through turbulent air is to be deter-
mined. The particular response of interest mey be the acceleratlion, veloc-
1ty, displacement, bending moment, sheer, stress, and so forth at any
arbitrary point of the aircraft structure.

The analysis will include three rigid-body degrees of freedom, heaving,
pitching, and rolling (z, 6, and @, respectively), snd an unspecified
number of elastic degrees of freedom (gr where T =1, 2, 3, o« « o)
defined by the principasl vibration modes of the alrcraft; that is, the
analysis 1s constructed for normsl modes of the entire aircraft defined

by Ar(x,y) (fig. 1).
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Use 1s made of Lagrange's equation to establish the equations of
motion for the system, for small perturbations from equilibrium, namely
(ref. 11):

E. E BEi _ BEe
at

34/ dq dq

dq  dq

The kinetic energy is

=
Il
=

f V2 dm
Sl
Thus,
d/oT d oV
Eﬁ(a_q) = f VSy o
where

V=i+xd+ oyl +>: Ar(x,7) by

r

The internal strain energy is (ref. 12)

By = %Z Mray2e,2
r

where
d
—E—j:. =0 (q. ¥ EI‘)
dq
o)
ﬂ = Mrw_regr (q = §r)



8 NACA TN 3879

The potentlisl energy of the external forces is

Ee =/; [z + 0x + ¢y +2Ar(x,y) §r] o(x,y,t) dy dx

The pressure difference acting on the aircraft Ap(x,y,t) contains two
distinet contributlions. The first part is due to disturbances of the
fleld caused directly by motions of the aircraft. This part mey be cor-
rectly accounted for by solution of the wave equation with approprlate
boundary conditions (ref. 12)

V2P= Piy

The other part 1s due to disturbances originating elsewhere in the fluid
(usuelly at great distance from the alrcraft) and, for incompressible
flow, can be described by the Navier-Stokes equations (ref. 13, p. 215)

There may appear to be a contradiction in the above discussion,
namely, that motion effects are determined from perfect-fluid considera-
tions through the concept of a velocity potential, while the disturbance
effects may be due to turbulence, which, in general, cannot be described
by a velocity potential. However, the scale of the turbulence which is
Important for the alrcraft gust problem is large enough so that viscous
effects may be neglected; that is, viscosity 1s assoclated with the very
emall eddies in the fluld. With viscosity thus eliminated, there is no
contradiction.

Solution of the problem as outlined for the case of a turbulent flow
superposed on uniform potential flow is an extremely difficult undertaking
even in incompressible flow. In order to gain further Iinsight into the
problem, therefore, it seems highly desirsble to mske some simplifying
assumptions.

Of all the parameters which enter the Navier-Stokes equation, namely,
pressure, density, velocity, and viscosity, it may be assumed that, so
far as the present sapplication is concerned, velocity plays the dominant
role. Furthermore, since interest 1s centéred upon eircraft response in
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the three rigld-body modes of heaving, pitching, and rolling end in a
number of elastic modes, all components of fluld velocity except_ that
which is parallel to the initial z-axis may be safely discarded.t Thus,
the significant part of the problem reduces to that of f£inding a satisfac-
tory description of one component of veloclty, namely, w. For small per-
turbations one can consider an equivalent angle of attack w/U= aj. The

reasoning here can be made genersl In the sense that 1t can be applled to
incompressible and compressible flow allke. It should be mentioned that
the elimination of the effect of the static-pressure influence in the
disturbance field 1s not completely straightforward, but i1t simplifies
the problem conslidersbly.

The influence of the motion of the aslrcraft, as mentioned previously,
can be hendled as a straightforward problem in unsteady potential flow;
this is wvery tedious, however, especially if all boundery conditions are
correctly included in the analysis. It is usual to maeke some simplifying
assumptions here also.

If it is decided that structural response is of primary interest,
for example, bending moment or shear, it is convenient to consider sim-~
plifying the aerodynasmics plcture as much as is consistent with the desired
accuracy. Thls is particularly desirsble in a statistical analysis, which
can become unwieldy for even the simplest of problems.

To show how the statisticel plcture can get complicated, consider
the factors that would be introduced by including an sdditlonal component
of velocity in the analysis, say the crossflow v. This means that instead
of "one-component" turbulence as given by the perturbation w, another
vector quentity v has been added and accordingly "two-component” turbu-
lence must be considered. This means thet additional statistical quanti-
tles are brought into the analysis. Important statistical parameters such
as probabillty functions, correlatlion functions, and spectra would have
to reflect this fact. In the general caese of two-component turbulence,
the correlstion tensor Rji(é) would contain four terms. This may be

compeared with a single quantity Rll(é) in the relatively simple case
of one-component turbulence. The probability functions for two-component

turbulence are correspondingly more difficult to determine, and the spectra
become extremely difficult to calculste in the general case.

These reflections add considersble weight to the ergument for sim-
plification of the analysis. Indeed, it is a matter of practical interest
that such simplificatlions are a necessary adjunct to keeping the mathematics
within reasonable proportions.

lNote thet a small effect may be expected because of crossflow v
arising on the verticel tail and e somewhat larger effect of crossflow
for swept wings may be expecited. However, these effects of crossflow
are neglected.
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The formulation of the equations from this point requires & speciflca-
tion with regard to the aerodynamic theory; namely, will the unperturbed
(steady) flow conditions be incompressible or compressible and, if the
latter, what Mach number chsracterizes the flow? Also, how does one
include the aspect-ratio effects? There are a number of theories which
afford an approximate description of Ap(x,y,t). The theory which is
used will depend largely upon the free-flight Mach number and the plan
form of the wing. In order that the present analysis may have a definite
framework within which to proceed, the followlng specifications are made

regarding the aerodynamic theory:

(1) Aerodynamic strip theory is used for both motion effects and
gust effects

(2) Quasi-steady aerodynemic theory for incompressible flow is used
to predict all motion forces by resolving the angle of attack
at 3/4 chord

(3) Unsteedy aerodynamic theory for incompressible flow is used to
predict gust forces (later in the analysis, this will be
modified)

(4) For simplicity, only the forces on the wing and horizontal tail
are consldered in the analysis

According to the first statement, the anaelysis must be restricted
to aircraft of "large" aspect ratio, but it may also include swept as
well as straight wings. The second statement restricts the analysis to

flight configurations where all free-body motions (including the vibratory
modes) occur at low values of reduced frequency, namely, k < 0.05; and,
of course, incompressible flow requires that the Mach number be low.

On the basis of these assumptions Ee may be written as Ffollows:

b
Ee =‘f [z + 60X + ¢y +ZAI‘(;€;Y) §ri]L(Y:;E;t) dy +
-b

o'
f [z + 6X' + ¢y "‘ZAI‘(g':Y)ng,L'(Y:SE':t) dy

bl

The 1ift forces on the wing L(y,X,t) dy end on the tail L'(y,X',t) dy
ere assumed to be concentrated at the local quarter-chord points of those

surfaces.
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There are two perts to L(y,X,t) and L'(y,X',t), corresponding to
the forces due to motion and the forces due to turbulence. The forces
due to motlon may be calculated by resolving the angle of attack at the
three-quarter-chord point as follows (ref. 12):2

2+ 8% + ay +2Ar(i,y)§r
L(Y;”\E:t)m = a.c(Y)sz ) +zer(i,y)§r - UJ.

z + 6%' + Py +ZAr(i',y)§r

Ul

Ll(YJ?{',t)m = ﬁ'c'(Y)Cza' 9 +zer(i,y)§r -

The dynamic pressure is given the symbol q to distinguish it from the
generalized coordinate q. It is important to keep account of the coordil-
nates involved in the above expressions; unprimed quantities refer to
wing coordinates whille primed quantities refer to tail coordinates, i,y
is the local coordinate of the wing quarter chord, snd X,y 1s the local
coordinate of the wing three~quarter chord. Note that a new quantity is
introduced in addition to the new coordinates, that 1s, the quantity &r
vhich gives the elastic twist of the wing (or tail) at the three-querter-
chord point.

The other part of the aerodynemic force, that part due to turbulence,
may be calculated from the relations (ref. 12)

L(y,%,t) g = de(y)Cy f Wt - my)a(T,y) ar

L (%) g = 3ot 0" [ ' - mya(ny) ar

2Note that effect of the wing wake vorticity on the horizontal tail
is here neglected for simplicity since it is debatable whether much is
to be gained by including this effect in an analysie of thls complexity.
Probably the only time 1t can be fully Jjustified is when tail loads or
tail stresses are of primary ilnterest.
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In these relstions the specifications of the kernel function & sre
purposely left in general terms in order to avold confusion. However, 1t
mey be sald that this function must teke into account sweep, taper, and
the finite time requlred for the gust pattern to pass from wing to tail.
In this connection it should be brought out that Taylor's hypothesis is
essumed valid for this analysis; that is, the gust field is regarded as
a "frozen" pattern which does not alter with time locally, but rather
the time dependence is caused by the uniform motion (at velocity U) of
the aircraft. Thie may be expressed in succinct terms by stating merely
thet Jd/dt = 0 in the fluid.

This completes the formulation of the problem sufficientliy to allow
derivetion of the dynemical equatlons of motion for the aircraft. Direct
substitution of the above results into Lagrange's equation ylelds the fol-
lowlng metrix equations:

[=] {1} + [E]{&} « [o] {a} «[e] {o} - Eaq) {2)

The varlous square matrices are given in the asppendix. The generalized
coordinate matrices {q} contaln the generelized coordinates =z, 6,
¢, and gr(r =1, 2, 3, + « «)s It is interesting to note in passing

that the followlng aeroelastic problems may be dropped out of the above
equation as special cases: Divergence,

[«]{a} +[]{q} =0 (V)

stability,

L) o[8{s) o [0} +[I{s} -0

control response,

(=] {s} +[&]{a) +[al{a] +[e]{a} - [aa] {2} oeter (2

and flutter,

~aP|m] {q} + 1aC(x) [&] {q} + C(k) [cz,] {q} + [e] {q} =0 (&)
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(The matrix [m'] includes apparent mass effects.) A slight revision
is necessary to obtain the flutter case; namely, the Theodorsen function
C(x) must be included in the motion forces. For simplicity, C(k) may
be assumed. to be independent of the span coordinate.

It is interesting to note that equation (3) provides the basis for
studying a gust alleviator system. If I:FJ j] (1) is added to the right

side of equation (5), an investigation can be made of the effectiveness
of various systems whose behavior is governed by a relation of the form

de(t) = fm hg(t - T)w(T) dr

where hs(t) is the system function. An interesting problem may be posed
by requiring that hg(t) be selected for minimm root-mean-square response
of, sesy, plitching displacement. This is the so-called Wiener-Hopf type

of problem.
SOLUT'ION OF DYNAMICAL EQUATIONS OF MOTION AND
DETERMINATION OF ROOT-MEAN-SQUARE RESPONSE
It was shown in the previous discussion that the equations of motion

for an alrcraft subjeet to turbulent wveloelty fluctuations in the xy-plane
and perpendicular to the xy-plane are formulated as follows:

[=]{a} +[&){e} + [e] {a} « [ {a} - [ras]{2)

where the various matrices are given in the appendix. It is shown that
the diasgonal matrix [Fj J] is the forcing-function matrix and is of the

form - =
£11(8) 0

© Il 6)
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Note that it is a function of the paremeter € = Ut. Various methods of
solving this set of equations are now considered.

It is well to point out that in the present problem fll(g),
foo(€), « « « are Stochastic functions of €, and solutions of the equa-

tions must be approached in light of this fact. This increases the com-
plexity of the problem considerably.

For purposes of comparison, some more-or-less standard methods for
solving linear equations are listed as follows: (1) By Laplace transforms,
(2) by Fourier transforms, (3) by finite differences, and (4) by superposi-
tion of indicial solutilons.

It 1s evident that direct application of Laplaece transforms must fail
because of the nature of Fjj; that is, the matrix is made up of random

functions which are consldered to have a beginning et -« in time and

the initial conditions are indeterminent. Direct epplication of the
Fourier transform, even in the bilateral case, must also fall because,

in general, the Fourier transform for the functions entering the right-hand
side of the equation does not exist; that is, the integral may be diver-
gent. Aside from these difficulties there is no generally consistent way
of specifying the functions fjj(g) because they depend upon the random
varlable ai(x,y). Even if it were possible to speclfy these functlions

in detail, direct application of the two transform methods would yield
nothing because of the aforementlioned difficultles. Solutions by finite-
difference techniques could, in principle, be carried out but, in practice,
would be a formidable undertaking. This leaves the last method listed
above as a logical cholce, 1f not, indeed, the only choice. It will be
shown presently that the method of superposition can be applied to deter-
mine a limited amount of informetion about the problem.

The method of superposition consists in building up & complete solu-
tion from certain special types of solutions which are relatively easy
to obtain. There are two common methods available, either of which may
be applled here, namely, superposltion of simple-hsrmonic solutions through
the use of the Fouriler integral or superposition of unit-impuise-response
solutions through the convolution integral. The latter seems to be the
better method because 1t brings in the statistical parameters associated
with the problem in a more stralghtférward manner. However, it is inter-
esting to point out that the solutions obtained by the unit-impulse method
are related to the solutions obtained by the simple-harmonic method through
the Fourier transform, just as the unit-impulse response is related to the
simple-harmonic response.
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In considering a solution to the matrix equation by the method of
superposition it is convenlent to introduce the Dirac delta function to
define a "primitive" solution, which corresponds to replacing the right-
hand side of the equation by the following matrix:

250 \_| {2}

The unit impulse &(f{) dis the forcing function in this instance
and its position in the matrix is given by the subscript Jj. A solution
for this case is callied a3 and q mnay be eny one of the seversl gen-

eralized coordinates =z, 6, @, or Ep. Clearly, then, the solution of
interest may be written (ref. 12, p. 245)

N [+
av) =) [ ey - g0 a
=

where N 1s the total number of generalized coordlinates and 1 1s in
the seme units as {. By definition q_j(x) =0 for x< 0. The cal-

culation concerning the quantities qy mey be carried out by any con-

venient method, including Laplece transforms and finite differences.
However, these calculations are especially tedious if N is much larger
than 3 or 4. For cases where a large number of generslized coordinates
is used in the analysis, the use of high-speed computbting machines is
strongly recommended.

The problem is far from being solved, however, with the writing down
of the above equation. A% this point in the analysis it 1s realized that
one must epply statistical methods to learn additionel information about
a(1), which is a stochastic function simply because the quantities £ j((.',)

are stochastlc funetions. Another question must slso be settied at this
point in the analysis; namely, what is the quantity of primary interest?



16 NACA TN 3879

If the quantity of interest 1s one of the generslized coordinates
or the nth derivetive of one of these coordinstes, then most of the
Information is avallable from the equation as it stands. On the other
hand, if a quantity such as bending moment or shear at some point in the
wing is of interest, then additional considerations must be given to the
solution in its present form. This point may be made clear if one con-
siders the following two typlcal cases, each one or both of which may be
of practical interest: (1) Study of alrcraft center-of-gravity accelera-
tion, end (2) study of wing-root bending moment.

In the first case the solution to be studied takes the form

N
i) =) [0 - Degy a
l -0

while in the second case the solution to be studied takes the following
form:

Mp(1) = -\/;b v au|y@ + x6 + ¥ +Z A(x,y) Ep] + j;b dy [L(x,y,t)m +

r

Lix,7,t) gy

Notice that each of the quantities @, 6, asnd so forth as well as
L(y,x,t), ere complicated functions of the corresponding primitive

solutions ¢j, 64, %, and so forth end the forcing functions fjy.

It 1s apparent that the celculation of the bending moment in the
manner indicated above is quite involved. An alternative means is avail-
able which is somewhat simpler in mathematicel form; that is, the bending
moment can be obtalned by linear superposition of the normsl modes as
follows (ref. 12):

M

p(2) =Z Artr(2)
r=



NACA TN 3879 17

where the quantity A, glves the root bending-moment coefficlent due to

unit deformation of the rth normsl mode. It can be compubed from the
inertis loading on the wing corresponding to the rth normel vibration
mode. The quantity M 1is the total number of modes that are used in
the analysis; for this case, M= N - 3. The quantities £, can be

obtained by superposition of the primitive solutions grj discussed

previously. Thus,
M N

Mp(1) =Z Z Ar fw Ery(2 - §)f55(8) at
r=1 J=1 -

Consideration is given now to the determination of certain statistical
quantities assoclated with the solutions of the dynemical equations of
motion. Interest is here centered on the study of center-of-gravity
acceleration and wing-root bending moment, respectively, as given by the
relations

N
'z'=z f 23(e)f55(2 - ¢) &g
.j=l

My =i i M ji: Ery(£)£55(2 - £} &¢
J=1 r=1

Both of the physical quantities on the left of the above equations
are, of course, stochastic functions end the methods of statistical anal-
ysis must accordingly be applied to obtain additionslly desired informa-~
tion. There are several questlons one might pose at this point in regard
to the statistical properties of ¥ &and M. Some of these are worth

noting as follows: (1) What is the probability density distribution?
(2) What is the correlstion fumection? (3) What is the power density
spectrum?

The probablility density distribubion provides information on the
amplitude of the stochastic function. It can be shown that both Z
and Mg are Gausslenly distributed provided that £354 1s also Gaussianly

distributed. This follows as & consequence of the central l1imit theorenm
and the properties of linear systems. It may be assumed that all of the
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quantities concerned here are Gaussian for convenience, but it is not

a necessary assumption in what is to follow. There are, however, strong
motivations for meking this assumption; that is, (1) the Geussian curve
has been exhaustively studied and accordingly much is known about it,

(2) it may be characterized by a single parameter, namely, the mean square
or standard deviation, (3) the characterization by the mean-square param-
eter provides a link between amplitude spectra and power spectra, and

(4) many physical quantities follow the Gaussian distribution.

-

The correlation function and power density spectrum are Fourier
transform pairs. The correlstion function provides informaticn on the
coherence of the stochastlic function et adjecent intervaels in time and/or
space, while the power density spectrum gives Informetion as to the dis-
tribution of power with frequency or wavelength. The use of the word
power 1is rether generalized in that it need not refer to actual physical
power. Perhaps a better terminology would be the mean-square density
spectrum since the area under the power spectral density curve is equal
to the mean square of the stochastic function. However, the term "power
spectrum” seems to be rather firmly entrenched in the literature.

If the probabllity density of a stochastic function W is called
p(W), the autocorrelation function of W is called Pyre(X), and the

power density spectrum of W i1s called @ww(aﬂ, then one may write .
(ref. 14)

W = 2 = waZP(W) aw = fm Cru) dw = §.(0)

-0

which means that the mean-square value is obtainable from all three of the
statlstical quantities discussed sbove. In the following discussion,

it is assumed that W = O; thet is, the mean wvalue of all stochastic
functions 1ls assumed to be zero. Also, the analysis is dlrected toward
the determination of autocorrelstion functions for (1) center-of-gravity
acceleration and (2) wing-root bending moment. From these results it is
possible to compute the root-mean-square response.

Autocorrelation of Center-of-Gravity Acceleratlon

The autocorrelation of the center-of-gravity accelerstion mey be
formed from the solutions to the dynamical equations of motion as follows:
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N N
2(1)2(1 + x) = 2 Z f dv 24 (v)f34(2 +x - v) X
=13

[ at g6 -0

av

where the bar over the symbols on the left-hand side and the brackets
[]av on the right-hand side indicate that the average is being taken

with respect to the ensemble at a particular value of 1.

With an appropriate change of independent variable and interchanging
the order of integration end sversging operations, the autocorrelation
of % may be written

N XN .
2(2)2(1 + x) = £(6)2,(¢ - v)E,f (x - v) 4t av
o J J
1 3

In order to reduce the autocorrelation of % +to this form it is also
necessary to assume that the foreing functions f3 and f£3 are stationary

random functions; that 1s, the average product fifj must be independent

of parallel translations of these functlons along the abscissa axis.
Another way of saying the same thing in regard to Z 1s to say that the
left-hand side of the edquation 1s independent of 1 for a stationary
process. (These remarks do not mean, however, that the functions are

ergodic.)

The double integral on the right may be reduced to a single integral
by defining the new quantity

(2) o
Py (-v) = f 2, (£)E;(¢ - v) ag

which is the cross correlstion between the ith primitive solution and
the jth primitive solution corresponding to ¥. In general, there will

be N¥° such cross-correlstion functions needed in the analysis. These
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quantities depend on the primitive solutions obtained by successively
substituting unit-impulse functions on the right-hand side of the dynami-
cal equations of motion. These cross-correlation functions are referred
to as the primitive cross-correlation functions corresponding to Z.
After substitution, the autocorrelation for ¥ reads

_ Y3 ey
Fz(x) = }: }: U/\ P13 (-v)fifj(x - v) dv
i J

There remains the problem of computing fifJ, but before thils is
considered the autocorrelation of wing-root bending moment will be

discussed.
Autocorrelation of Wing-Root Bending Moment

The autocorrelation of wing-root bending moment may be formulated
as follows:

N N M M
MB(2 )Mg(T + x) = 2 Z Z 2 M""ﬂ Er1( g (L - VIELEH(E - v) av ag
i1 J =rs8

In a menner entirely analogous to the formulation of ¥ eutocorrela-~
tion, a new cross-correletion function may be defined as

r,s

q)ij ('V) = j:w §rj_(§)§sj(§ = V) d-g

In general, there will be (NM)2 such cross-correlation functions needed
in the anslysis for bending moment. These quantities may be referred to
as primitive cross-correlation functions corresponding to £, &and Eg.

It is of utmost lmportance to keep the subscripts and superscripts in
thelr proper order to avoid error. After substitution, the autocorrela-
tion of bending moment reads
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N N M M .
MMy(x) = Z Z Z Z Arhs j:m cpiss(-V)E’?;(x - v) dv
1 3 rs

Notice that the cross-correlation function fifj occurs in the expres-

sion for bending-moment autocorrelation in the same form as in the accel-
eration autocorrelation. Before proceeding to a discussion of this quan-
tity in detall some remsrks should be made about the analysis at its
present stage of development. First of all, 1t 1s quite evident that
the analysis will reach vast proportions if the numbers N and M are
very large. For example, if three rigid-body modes are used in conjunc-
tion with three elastic modes then 36 primitive cross correlations are
needed for the accelerstion sutocorrelations, while 324 primitive cross
correlations are needed for the bending-moment auwtocorrelation. Some
idea of how this goes may be seen in table I.

Cross-Correlation Function £4% 3

Consideration is now glven to the determination of the cross-
correlation function f£4f 3 keeping in mind thet the anslysis 1s becoming

extremely complicated and that some simplifying assumptions may be made

in the interest of retaining en snalyticel procedure wvhich is useful for
practical gppllcetions. It is shown in the appendix that a typlcal term
of the forcing-function meatrix corresponding to the Jth row can be written

b »Q|f - % - x
£33 = f Ay(y) ay f ¥| —————— |y (x,y) dx +
=-b —00

b' ' P rg - %' - x
:/:b' Ayt (y) oy J:m %__c—'(y-;_ ay (x,y) dx

The function ¥ may be identified as Kissner's function. The
argument of the function as above written takes into sccount the effects
of sweep and taper. The Kilssner function, as i1s well kmown, tekes into
account the unsteady aerodynamic effect of the 1ift buildup on the air-
foil due to varietions in ay. If the variations in «f are slow compared
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©)
with the verilation in Y, over, say, 10 chords, then quasi-steady saero-

dynamics may be used, and the quantity may be replaced by a unit
impulse.5 In the following discussion it is assumed that a4 varlations

are slow enough to warrant this simplification. Under this simplifying
assumption the forcing function reads

b b!
fJJ = \.[:.b dy Aj(y)a'i(g - Xos¥) + \/:b' dij'(y)d:i(C B xo':y')

Notice that the effects of sweep and taper are still included. The cross
correlation fif (X) may be computed in a straightforward calculation

using the above relation; namely,

b
(%) = ﬂb dy dn Ay(¥)ag(n) o1(f - %o, (f + X - x0,1) +

b b'
f f dy dn Aq(¥)A3' () aalf - %ol + X - x5',m) +
b Jop!

b b'
fb o dy dn A" (y)ay(n) oalt - xo',¥)as( + X - x0,m) +

b!
. dy an ALt (y)Aag'(m) oq(8 - xo"s3)e(f + X - x5',7)

If the turbulence i1s homogeneous, the quantity ajay may be ldentified

as a spatisl autocorrelstion function In two dimensions in which the
spatial dependence is given in terms of the differences |y - 1|,
|xo - xo'l, and so forth. It is important to notice that in the case of

a swept wing (or tail) x, is a function of the spanwise coordinste.
In perticular, if I’ is the sweep angle at midchord then -

xo(y) - %o(n) = sin Ty (y - )

Jsince a "frozen" turbulence field has been postulated, it may be
stated equlvelently that wnsteady aerodynsmic effecte may be neglected
in the cases where the turbulence integral scale is large compared with
a characteristic dimension of the wing, in this case the semichord. An
argument which leads to this simplification 1s given in reference B
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Also, the last term on the right-hand side of the relation for fifj(x)

1s small compared with the other terms, being approximately in the ratio
of tail area to wing area squared. Therefore, this last term msy be
neglected with 1ittle error. Finally, 1f the autocorrelation for ay

is given the symbol gy, the relation reads
y-n]}+

oo

b b’
f:b f_b' dy an Ai'(y)Aj(n)cpw[X + %' - Xos|¥ - nl]

- b
£1£5(X) = ﬁb dy an A1(y)A3(n)QgqiX + sin I'(y - 1),

b ! ' |
f_b f_b. dy dn A1(y)ay (Tl)cpwl:x + X - Xo's

Notice that the effect of sweep is taken into account by ineluding span-
wise dependence in both coordinates of ¢aa(X:Y)- For the first integral

this dependence is rather simply included, but 1in the last two Integrals
a more general relation must be used, namely,

Xo(Y) - Xo'(n) =1g -~ sin T,y + sin T',q

where 1o is the distance between the midchord of wing and the midchord

of the tall at the plane of symmetry. For most aircraft wherein both
the wing and the tail employ moderste sweepback, the right-hand side of
the above relation may be replaced by 1g. This affords considerable

simpllification in the last two integrals affecting fifj'

Certain speclal cases willl now be considered in light of these
results. The first case studied is for straight or moderately swept
wings. Another speclal case will be considered which-leads to somewhat
simpler results as will be seen, that is, the case when ¢daﬂx,y) may

be replaced by @ . (x).

Special Cases

Straight wings or wings with moderate sweep.- In order to avoid
mathematical encumbrences, only one term will be considered on the right-
hand side of the expression for fifj remembering, however, that this
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is only part of the totel contribution. The remaining two terms should
contribute in the order of 10 to 20 percent so that they should not be
ignored completely. For this case, therefore, one may write

- b
£3£4(X) = ﬂb dy an Ay (¥)Ay()ega(Xsly - af) « . .

Considering this expression in light of the definition of A (see
appendix), it 1s evident that an important speclal case is obtained when
1= =1, that is, the case of the total 1ift on a rigid wmswept (or
moderately swept) wing restrained against motion. For this case,

M = EC(Y)Cza(Y)

Other special cases (e.g., rolling moment on a rigld restrained wing)

may be obtained in a similar menner from A5. In order to evaluate the
expression for fifj, a specification is needed with respect to P

In other words, the "space-time" autocorrelation (space-time correlation
is directly proportional to space-space correlation under Taylor's
hypothesis} for the turbulence is needed. Here, indeed, is the crux of
the matter, but it is this quentity sbout which the least is known so

far as atmospheric turbulence is concerned. The space-time correlation
is extremely difficult to measure even under ideal experimental test con-
ditions. Furthermore, very limited information is avallsble which affords
& rationel besis for estimating this quantity theoreticsally.

If the turbulence 1s assumed to be isotropic, then theoretical
expressions could be used, but it would be difficult to Justify thelr
use. For example, an expression which is based upon isotropic turbulence
considerations and which is not too difficult to handle mathematicelly is

the Gaussian curve
— - 2
—‘/23 VP (%,7) = wz[exp -(x® +y3) [T }

where w2 is mean-squered intensity and 1 is integral scale of turbu-
lence. From the remsrks it is clear that somethlng more definitive is
needed in order to complete a gust-load analysis of a full-scale alrcraft,
especially when spanwise partial correlation effects are to be included.
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One-dimensional gust structure.- The case of the one-dimensional
gust structure affords considerable simplification in two distinct areas
of the problem, namely, (1) the determination of the primitive solution
and (2) the determination of the autocorrelation. If the gust structure
is one-dimensional the terms entering the right-hand side of the dynamical
equations of motion include the angle-of-attack fluctuations oy as =

common linear factor. The matrix Fjj may be replaced by

- .
£q1* 0

foo¥*
[Fjj]-= oy () )

0 fNN*

- -

where the quantities fjj* and fjj are identicel except that the angle-

of-attack fluctuation a3 does not etfter into the spanwise integration.

For this case, only one primitive solution is required for any perticular
quantity of interest. This is true, for example, in computing either
center-of-gravity acceleration or bending moment or any other quantity
which may be of interest. All that 1s required to arrive at & solution
to a particular problem 1s to replace ai(g) by the unit impulse, to

compute the desired primitive solution, and to use this primitive solu-
tion in a superposition on ai(g) to obtain the final desired result.

Suppose, for example, it 1is desired to determine the center-of-gravity
acceleration and the autocorrelation function of the wing bending moment.
The primitive solutions may be designated Z*¥ and Mp¥*, respectively.

Thus, -
#(1) = fm (1 - L)ag(t) at
Mg(2) = f Mg*(2 - Qay(g) at
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It is evident that this is a much simpler means of determining the final
results. The analysis for this case is 1n all respects similar to the
enalysls of an electrical circuit with stochastic inputs. Accordingly,

the relations which are developed in the analysis of such systems may

be directly epplied here. It 1s interesting to compare the sbove scheme
with the previous one in terms of relative complexity. Such a comparison

is best brought out by considering the number of primitive cross-correlation
functions needed to complete the above analyses. In the case of the center-
of-gravity acceleration it is necessary to compute only one primitive cor-
relgtlon which 1s, of course, an sutocorrelation rather than a cross cor-
relation. In the case of the bending moment, it is similerly necessary

to compute only one primitive autocorrelation. However, for bending moment,
it is important to notice that the primitive solution depends upon all nor-
mal modes £,%, and the total bending moment must be obtained from the

relation

MB* = z 7\r§r*

r

where the values of &% are obtalned by replacing o4({) by the unit
impulse.

The primitive-solution requirements and associeted primitive-
correlation-function requirements may be compared with those in table I.
It is clear that the one-dimensional case is several orders of magnitude
simpler to apply. One may generalize this result in the following way.
For the one-dimensional case, let | represent some physical quantity
of interest whilch depends upon the solution of the dynamical equations
of motions. Let up¥ he the solution of the equations for ui(g) =8 =

Unit impulse, Then, the autocorrelation of pu 1s given by

2 = [ ot - Deaa(0) at

where Py 1s the autocorrelation of p* and @qy is the autocorrela-
tion of angle of attack a.
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If the power density spectrum of u is of interest, then (ref. T,
p. 322)

(@) = |45 (0)] Pona(e)

where © i1s mean-power density spectrum and M*¥(w) is obtained by letting
af = exp lat in the dynamical equations of motion.

This relation is a famlliar one which is basic to the study of sta-
tionary time series and linesr passive systems. It may be applied to
any linear system with constant parsmeters provided the input quantity
is & stationary random function of one independent variable. For a linear
passive electric cilrcult these conditions are satisfied. For an airplane,
these conditions will, in general, be satisfied only when the turbulence
scale is "large." In this case the turbulent velocity fluctuations which
influence the airplane response &t any instant may be considered constant
in the lateral (spanwise) direction. The anslysis in these cases of large
turbulence scale is a great deal simpler than the general enalysis. Flight
measurements of the power density spectrum of the gust considered as a
one-dimensionsl process (refs. 3, 16, and l’{) mey be used in a one-
dimenslonal anslysis of the type discussed herein.

The function M*(w) appesring in the above relation may be cal-
culsted from the dynamical equations of motion. For example, if TO polnts
in the power density spectrum are to be calculated and if the analysis is
for six degrees of freedom, it will be necessary to perform 7O inversions
of sixth-order matrices to obtain M¥(w).

SOME SIMPLE ILLUSTRATIVE EXAMPLES

The general formulation of the problem of airplane gust response has
been exemined. This problem becomes exceedingly complex and diffilcult to
handle snalytically when instantaneous spanwise variations of the gust
field occur. Several simplifying assumptlions were Introduced into the
formulation. Bubt the assumption which achieves the grestest simplifica-
tion in the analysis is the postulstion of a one-dimensional gust structure.

For this case, the response may be characterized by the relation

Buu(e) = |15 ()| “Oaa(e)
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where

K generalized dependent (response) variable

¢uu(a» power density spectrum of p

M * () trensfer function of p corresponding to sinusoidsl gust
input (obtained by solving dynamical equations of motion
for airplene)

The quantity ©y,{w) 1is the power spectrum of w/U and may be
represented by the one-dimensional isotroplec spectrum (ref. T, p. 322)
as

U2¢aafaﬂ -

where I. 1s the inbtegral scale of turbulence, end w2 1is the mean-
square gust velocity of turbulent velocity fluctuations normal to the
airplane flight direction and lying in the plane of symmetry. The mean-
squere 1lift response as a function of the parameters of the problem will
now be investigated. In genersl, the transfer function M*(w) is a func-
tion of reduced frequency abc/U and certain nondlmensional airplane

perameters, for example, alrplane relstive density, pitch radius of gyra-
tion, tail length, center-of-gravity position, tall effectiveness factor,

and so forth.

Using thet information, one can write the following relstlon for the
mean-squere 1ift coefficlent (ref. 18):

?= J;m og; Cp () dow = j: 'MCL*((D)|2°aa,(<D) dw

- j;m IMGL*(gbC/L, K, 1, Ry « .)l B ouo(8) at
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%?. Thus, it is seen that the mean-square 1ift coefficient

where ¢ =
is & function of a number of nondimensional airplane parsmeters and the
parameter L/bc, which is the ratioc of turbulence scale to wing semichord.

The 1ift coefficient 1s slso proportionsl to the turbulence mean-square
intensity. Any other response variable of interest, for example, bending
moment at wing root, would similarly depend upon these numerous parameters,
though not in the same way, of course.

A complete paremetric investigation (see, e.g., ref. 15) of the
problem ag above formulated is beyond the present scope of study. However,
1t is desired to consider the following important questions:

(1) What is the importance of unsteady aerodynamics in the 1ift
buildup due to the gust?

(2) What is the importance of the pitching degree of freedom?

(3) How do the results compare with results obtained by the sharp-
edged-gust formula?

Importance of Unsteady Aerodynemics

In a paper by Pung (ref. T), the problem of unsteady serodynaemics
was considered in the framework of a single-degree-of-freedom vertical

translation. Results were obtained which included the effect of unsteady
aerodynamics and also apparent mass effects but which neglected contri-
butions of the horizontel tail. In the genersl formuletion presented
here the unsteady aerodynamic effects and apparent mess effects have been
neglected, but the contribution of the horizontal tail hes been included.
It is desired to isolate the unsteady serodynamic effect. To do this,
consider the integral

0?1 f“’ £2(1 + 3t2) a
(c;2) x Jo 2
L™/ resf (2»:_) + e2|(1 + £?)2
bch‘.

where k = 2m/spSb, is the airplane relative demsity. This may be com-
pared with the expression given in Fung's paper.
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The reference 1ift coefficlent is based upon the sharp-edged-gust
formula

—~ 1 - _
(CL)ref = 2nw' /U

where w' i1is the root-mean-square gust Intensity. Figure 2 shows a
direct comparison of results. It can be seen that unsteady aerodynamic
effects become less lmportant as the integral turbulence scale becomes
large relative to the wing semichord. Also, for large values of alrplene
reletive density, the effect of unsteady serodynamice decreases for given
values of L/be. This latter influence is much less apparent than the
scale effect. o

Importance of Pltchlng Degree of Freedom

A parametric study of gust loads in two degrees of freedom was made
by Brenner and Iseksen (ref. 18). In that study, the gust structure was
greatly simplified to the case of (1) a uniform step-function gust and
(2) a wniform ramp-function gust. In what is perhaps the most exhaustive
parametric treatment of the problem so far, charts and numerical dats are .
given for more then 225 case studies. Certain effects on the gust response '
were investigated, for example, effects of alrplane relative density,
effects of pitch radius of gyratlon, effects of tail length and tail
effectiveness, end so forth. A parametric study of such scope 1ls outside
the present investigation. However, to settle the questlon of the impor-
tance of the piltching degree of freedom, a &imilar analytical study for
stochastic gusts is warrented. Such a program could meke use of results
obtained by Brenner end Isaksen 1f sufficient data on the asymptotilc
behavior of their responses are evailable.

Only peak values of the responses were of interest in thelr study,
so the responses for later times are not given in the report. To make
use of step-function response data for computing responses to stochastic
gusts, a Fourier integral operation is involved, and this integration
extends over the range 0 S t £ ». Unfortunately, the date of refer-

ence 18 do not cover the required range on t.

For the sake of simplicity, two speciel cases are considered which
are cheracterized by two extreme values of the pitch radius of gyratlon,
nasmely, J-—>0 and J—s». The case for infinite radius of gyration is
essentially the one-degree-of-freedom case of vertlcal translation, since
with infinite moment of inertie sbout the pltch axis, the eirplane can-
not respond in pitch. For the other case, the pitch radius of gyrsestion -
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(moment of inertia in pitch) is so small that the airplane offers effec-
tively no inertial restraint sbout the pitch axis. Motion about the
pitch axis is thus entirely the result of serodynamic moments sbout the
center of gravity. Any actual case would lie between limits given by
these two simple cases. To establish these limits, the dynamic equations
of motion must be solved corresponding to the two stated limits of pitch
radius of gyration. This procedure leads to an expression for the
transfer function in terms of the airplane parsmeters and the reduced
frequency. If, in addition, one considers that the center of gravity of
the airplene is subject to a narrow range of variation, say between

25 and 50 percent of the chord, some additional simplifications in the
expression for the transfer function are possible. An expression which
closely spproximates the transfer function for small pitch radius of
gyration is included in the following relations for mean-square 1lift
coefficient with center of gravity at 50 percent of the wing chord:

or 1 f“' £2(1 + 3t2) ag
(c12) * Jo 2
TeHT =0 — = | s2r (1 e2)?
bekl' (1 + R)

Here, two new parameters have been Introduced, the nondimensional teil
length 1', referred to wing semichord, and the ratio of tall area to wing

ares, R.

The ratio of Cp2 for J-—>0 to C;2 for J-»>w may be computed
by referring to previous results, namely,
_ £=(1 + 3t2) o Gt
2
(CL )J——)O 0 [ZL/ch.Z(l + R)]2 + 62 (1 +82)°

— = -
(?)_.. [ (1+383)  a
O (2/foer)® + g2 (14 £2)°

This relation is plotted in figure 3 for the velue 1I(1 + R) = L.O.
For the given parameters, the relative effect of the pitch degree of
freedom becomes more important as the turbulence scale becomes large
relative to the wing semichord. Also, the effect of the slrplane relative
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density 1s to decrease the effect of the pitch degree of freedom as the
relative density increases; all other parameters remsin fixed. An increase
in tail length will have the same relative effect as an increase in air-
plane relative density. A larger tail will have a mitigating effect on the

gust loads.

Comparison of Results With Sharp-Edged-Gust Formula

To see how these results compare with the sharp-edged-gust formuls,
some representative curves are shown in figure 4. These curves were cal-
culated using the formuls

cr? 1 f'“ £2(1 + 362) at
o]

(CPrer * YO (2L/bor)2 + 62 (1 + £2)2

These results show a decreasge in mean-square lift response with
increasing L/be. Also, the effect of decreasing the airplane relative
density is to mitigate the gust load (compare this with the relative
efféct of k on the loads when pltching is included); all other parem-
eters remain fixed. This latter effect is in accord with the results of
Bremner and Isaksen for step-functlon gusts. Perhaps the effect of
increasing the turbulence scale is tantamount to increassing the gust-
gredient distance for remp-type gusts. The overall effect on the lift
response to stochastic gusts is in qualitative agreement with ramp-gust
responses if one uses this reasoning. It must be remembered that this
is a statistical process, and, if a root-mean-square load factor of, say,
0.8 is predicted, this load is actually exceeded many times, as evidenced
by the distribution of the load factor in the probability sense (ref. 19).
A load factor of 2.0, for example, is not impossible. In fact, if the
distribution is Gaussian, the probability of thls happening is 1.24 per-
cent, and the odds against the load factor equeling or exceeding 2.0 are
only sbout 80 to 1. Thus, while the sharp-edged-gust formula gives con-
servative results for root-mean-square load predictions, it msy be
perfectly adequate for design.

CONCLUDING REMARKS

An analytical scheme has been derived which can be used to estimate
autocorrelation functions and, by use of a Fourier transformation,
power density functions of airplane responses to atmospheric gusts. The
analysis takes into account the principle degrees of freedom of the air-
plane and includes effects of spanwise (as well as chordwise) variations
in the instantaneous gust pattern. The final results depend upon the
solution of dynamic equations of motion for the alrplane for a set of
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relatively simple forcing functions, namely, a set of delta functions.
These solutions are superposed by convolution with the actusl gust pat-
tern to obtain the desired results. Two typical responses of interest
are discussed, the center-of-gravity acceleration response and the wing-
root bending-moment response. The autocorrelastion functions of these two
quantities are expressed in terms of a multiple sumation, extending over
the totel number of degrees of freedom. FEach term in the sumsation
Involves a correlation of the primitive sclution cross correlation with

8 cross-correlation function. This cross-correlation fumetion can be
calculated by postulating that the turbulence field is stationary and
homogeneous; also, the sutocorrelstion function in two dimensions must

be kmown for the gust pattern. This quantity is defined by @ . (x,¥);

it is by meens of this function that the lateral gust field is brought
into the analysis. Unfortunately, little is known sbout this funection
for the stmosphere, indicating that practicael spplication of these results
must awailt the determination of qwm(x,y) from atmospheric-turbulence
research investigations.

A speclal case which is vastly simpler in principle follows from
neglecting the latersl veriations in the gust pattern. This case has
been labeled "one-dimensional” gust structure. The simpliification of
the analysis is such that the amount of work can be reduced by a factor
of at least Ne, if N is the number of degrees of freedom. For thils
case, only one-dimensionsal autocorrelations enter; for exsmple, @am(x,y)

may be replaced by @duﬂx). Flight measurements of the power density

spectrum of the gust considered as a one-dimensional process may be used
in a one-dimensionel analysis of the type discussed here.

Some simple illustrative exemples are treated for the case of a
one-dimensional gust structure. The validity of neglecting the effect
of unsteady aerodynamics is investigated by comparing celculations for two
cases of one degree of freedom. The results show that this assumption may
be justified only when the integral scale of turbulence is large compared
with the wing semichord. A corollery to this conclusion masy be stated as
follows: When conditions are such that wmsteady aercdynamic effects are
slgnificant, then the lateral gust effects may become important also, and
it does not seem consistent to include the one and neglect the other. Both
should be either included or neglected In a rational analysis.

In a one-dimensional snalysis, it is conservative (i.e., higher
loeds are predicted) to neglect unsteady aerodynemic effects. It is
not possible to state at this time the comparison for a two-dimensional
analysis.

The importance of the pitching degree of freedom is investigated
by solving the two equations of motion (for heaving and pitching) under
two extreme velues of the pitch moment of inertla, nemely, for a pitch
radius of gyration of O and one of . The latter case effectively
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includes only the plunging degree of freedom. The results of this simpli-
fied study show that the pitching becomes relatively more important as the
turbulence integral scale becomes large relative to the wing semichord.
Before one can draw general conclusions, however, an extensive parameter
investigation must be made.

The results of a single-degree-of-freedom anelysis (neglecting uvnsteady
gerodynamic effects) are compared with the results of the sharp-edged gust
formula. For this comparison, the root-mean-squere gust intensities are
set equal. These results show that the root-mean-square loeds are always
less than those predicted by the sharp-edged-gust formula and become even
smaller as the integral scale of durbulence increases.

One final point is worthy of mention, namely, that this is a statis-
tical process, and if a root-mean-square load factor of, say, 0.8 is pre-
dicted, it should be remembered that this load is actually exceeded many
times, as evidenced by the distribution of the load factor in the prob-
ability sense. A load factor of 2.0, for example, is not ilmpossible.

In fact, if the distribution 1s Gaussian, the probability of this hap-
pening 1s 1.24 percent, and the odds against the load factor equaling or
exceeding 2.0 are only about 80 to 1. Thus, while the sharp-edged-gust
formule glves conservative results for root-mean-squere load predictions,
1t may be perfectly adequate for design.

Extensive research investigations should be carried.out (1) to
determine much needed informstion on the atmospheric gust structure,
particularly on two-dimensional turbulence spectra so that a direct com-
parison can be made with date now available and (2) to study methods of
applying atmospheric turbulence data to practical probleme of flight.

Massachusetts Institute of Technology,
Cembridge, Mass., July 1, 1955.
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APPENDTX

DERIVATION OF MATRICES ENTERING INTO DYNAMICAL

EQUATIONS OF MOTION

The equations of motion for an aircraft flying at mean velocity U
through turbulent air are represented by the matrix equation

[ i} +[81G) + [l + [el{a} - [my3) )

The various sguere matrices will now be considered in detail.

Inertia Matrix I:m:l

The inertia matrix mey be derived by noting that the column
matbrix [m] {q_} follows from

Lfvﬂdm

for § =2, 6, é, and ér(r =1, 2, 3, . . . (in this order)) where

V=2%+x0+yf +z A(x,¥)E,

r

For example, one may conslder the terms in the third row of [m]{q_}
These mey be written

l_inﬁ_l{q} %LV%M=LM%%+xé+ﬁ+Z A_r(x,y)égy

z'fsdmyq"e' j;dmw+§3b/:sdmy2+z ErLMAr(x,y)y
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whence
LmBj—J = Sx, I}q-, Ix’ at¢l, G.¢2,
where
Sx static moment at x-axis
Ixy product of inertia at xy-axis
Ix moment of inertia at x-axis
% = J; dm A (%,¥)y
Ap = j; am Ax(x,¥)y

and sco forth. The determination of the remaining rows of [ﬁ] follows
from an obvious extension of the gbove equetions as

[=:/{8
22/}

ZMp + b'sy + 58}{ + 'g.ra'zr

By + BI, + #L, +_Z £ gy

where
MA mass of airplane
Sy static moment about y-axis

Iy moment of inertia about y-axis



NACA TN 3879 31

Az fdmp‘r(x,.V) with r=1,2, 3, . . .
S

gy U/‘ dm A.(x,y)x with r=1, 2, 3, . .
S

Mr=J;MAr2(x,y)

It should be noted that use has been made of the orthogonality reletion
between normsl modes in the above development. Also, depending on the

use of either symmetrical or antisymmetricsel normal modes, certain terms
will be zero. PFurthermore, since the origin of the principle-axis
coordinate system is here taken at the virtual center of gravity of the
aircraft, all static moments S, Sy, and Ixy will be zero. For normal

modes it may be shown that the terms Lyps  Qgoes and a¢r are zero also.

However, they are retained here for generality. Thus, the mass matrix
mey be written

jkg | Sy Sx %zl G2 <o
Sy Iy Ixy agy g2

[z] =] 8x Ly Ix oy agn .
a1 %91 g1 M 0 .
| %22 ag2 ago o Mo Tt

which is symmetric about the main diagonsl.

Aerodynamic Matrix [8]

The aerodynamic matrix [S{Iderives from those terms in the virtual

work expression due to Q. These can be traced to the aerodynsmic forces
due to motion of the airecrsft. A typical row from this matrix, say

[_834], as obtained from JdUg/df follows:
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[QBJ:]{} f y @y fae(y)0y (y{z P +UZ Ar(i’y)é”} .

j=1,2,3,.

b _ 2+ 8% + Py + Z A (ET,y)E
fb! v ay Ja'e'(y)cy,'(y) .

U|

- ~b
=z % Jib dy ye(y)ey (¥) + 3 e f dy ye'(y)c, '(y):‘

—

Dy ' — bt
C % f_b dy yxe(y)cy (¥) + %—, f_b‘ dy yx'c'(y)cza'(y)] +

. [ b - b!
A f_b &y y2e(y)Cy (¥) + v f-b' dy y2c'(y)Cza'(y)] +

I
) gr[% [, & 89, @ «
r -

b .
f ay Ar(F,y)yC‘(y)sz'(y)}

'bl

I
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where the definition of the elements 8,31, 832, . -« « 1s obvious.

Continuation of this development ylelds the remaining matrix elements:

e & - [% [ wane & [ o e-mclm-(y)} o [ s [ o e-(y)czu'(y)sf] .

3=1,2,3;5...

«lq b br « lg b -
¢l,€,} [arwea & [ o rc'(y)ch'(v)jl+ Z ;r\;} [, & atznete, ) +

o re
& [, @ Lo )

q b ra B! ~ g v = P P! st U 1
| 223} {a}. il;% f_b ay Fel(y)e, (¥) + & f_b' ar m'ur)c;“'(y)J + e% f_\, ay Fely)oy(v) + gr J:w &y XxFer(y)eq, Wﬁ*
=1,2,35,..,

~ b b R PR
a[g [owmam g [ o z'wcy)c,u-(y):\ £y :,[ﬁ [, & sEnetns o) +
r

'bl
&/ L E'Ar(Fﬁ)c‘(r)Gla_'(v)]

- b - pb’ RE b ~
|y {5} ;E [, & n@nme e+ [« Al(z-mc-(y)c;m-(y)] . eli% [, & sEne o «

J=1;2,3, .00

- b! — J= b - — Bt -
¥ f:b' & xlAl(i'.y)c-(y)cla-(r)il +{% f_b & yh (%710, (3) + ¥ f-b‘ &y Yll(x':ﬂc'(r)clq'(y)] .

- a b ~ - ? Bt o g 1 1
z & 3 j’:b ay Al(x,y)ﬁr(x,y)c(y)cln(y) +gr J"_‘bl &y ‘-l(! ,Y)Ar(x s¥)e (V)clm (v}
r

This matrix is not symmetric since X # X.
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Aerodynemic Matrix [cr,]

The aerodynamic matrix [a.:l may be derived in the same way as the
matrix [gj except that one considers only the static terms {q} s which
contribute to the "generalized force" BEe/aq. For example, the third
row of [a.] is given by the expression - :

E%le{q}= f_: -y dy iC(Y)Cza'(Y)E + z Or(%:¥)Ey +.

=2,4305 40

b _ _
f -y dyqa'e'(y)oy '(y)je + z er(x7,¥)E,,

'bl

b b
= 8[q fb -y &y e(y)e; (v) + ¥ fb' -y dy ' (¥)Cy ' (¥)] +

)
Z £.ld /:b -y dy Gr(i,y)c_(y)cza(y) +

bf .
T [ v enemo o
-b! o

end so on. The matrix [cx,] is not symmetric.
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Elasticlity Matrix [e:l

The elasticity matrix [e] may be derived by noting that it derives
from BEiIBq_ where g = & and where
E; = 1/2 Z Mywp2t 2

Thus, this matrix is a dlegonal matrix of the form

[ —

o

]

Forcing-Function Matrix I:F 3 j:l

The forcing-function matrix does not depend in any way upon the
generalized coordinstes. However, as will be presently shown, it is a
diagonal matrix whose elements depend upon the result of forming aEe/ oq
for q =12z, 6,

Consideration may be given to that part of OFg/dq due to turbulence
as follows:

b -]
% \[:b dy [z + 6X + ¢V + z AT(J“:';Y)E;IG_C(Y)CZG(y) \/:m 'i'('b - 'r,y)a.i(-r,y) at +

b o
SE \/:b' dvlg + 6% + @y + Z Ar(‘i',yﬁl‘jl?c-(y)cza:(y) f-m ‘if'(t - T,¥7)ay (T,y) ar
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If the pertials are formed, one obtains

b o
%; = Zi j:b dy C(Y)CZG(Y) ‘[:.oo \i(t - T,y)a,i(-r’y) AT + « « =

3 - [P . o

35 =4 j:b dy Xe(y)cy (v) f_m ¥t - 7y)oy(ry) dr+ . . .

3 P “

33 1 f_b dy ye(y)Cy (v) iw V(t - Ty)ag(T,y) dr + . . .
:—r' f dy An(x,y7)e(y)Cy (¥) f Wt - Ty)ag(Ty) aT + .« . .

Using Taylor's hypothesis, it may be shown that a typlcal term
from the gbove ensemble may be written

f: ay Ay(y) f: @[% oy (%) ax

where X, = xo(y) = Distance parallel to x-axis from center of gravity
to mldchord end ¥ = dy/dx.

Note that Ut = { =and also that the turbulence oy(x,y) is phased

with respect to the aircraft center of gravity. Accordingly, the elements

of Fjj are

fjj-f ay 14() f [ - }i(x,y)au

b! - x5' - x '
' 2770 T a(x,y) dx
N dy A'3(y) f [ Y :| oy (%,
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Te quantity AJ (y) must be chosen in accordance with the relations:

2(3) = )y ()
Ap(y) = Te(y)Cq (¥)
A3(y) = @ye(y)Cy (¥)

2,(y) = W (&,3)e()Cy ()

Mt(y) = 3’ (7)Cq t (¥)

2p'(y) = T'%e' ()0 ')
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TABLE I.- DETERMINATION OF NUMBER OF PRIMITIVE CROSS

CORRELATIONS NEEDED IN ANALYSIS

Nuriber of primitive cross correlations for -

Center-of -gravity

Wing-root bending moment

acceleration
PI M N M=1 M=2 M=3 M=15L
2 L 2 L 16 36 6k
3 9 3 9 36 81 1kl
i 16 L 16 64 1k 256
5 25 5 25 100 255 - 400
6 36 6 36 14k 32k 576
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MEAN CHORD -——— RIGID CONFIGURATION

— — — CONFIGURATION IN rih
NORMAL MODE
MEAN. CHORD

(a) xz-plane, left side view.

(b) yz-plane, front view.

Figure l.- Coordinate system for dynamic enalysis. Point A is center of
gravity of rigid configuretion; point E is center of elastic twist;
8x(x,y) = €r(y); point O is average cen‘ber-of-gravity position of

rigid configuration.
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Figure 2.- Comparison of mean-square 1lift response using unsteady end
quasi-steady aerodynamic theory.
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Figure 3.- Effect of pltching degree of freedom on mean-square 1lift
response. 1'(1 + R) = 4.0; center of gravity at 50 percent chord.
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